If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9n^2+44n+32=0
a = 9; b = 44; c = +32;
Δ = b2-4ac
Δ = 442-4·9·32
Δ = 784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{784}=28$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(44)-28}{2*9}=\frac{-72}{18} =-4 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(44)+28}{2*9}=\frac{-16}{18} =-8/9 $
| 56+x=25 | | 9(z-4)=-18 | | 8x+4(4x+3)=4(6x4)-4 | | 530.66/x=13 | | 2(9x-11)=2(5x+8) | | 65+3x=90 | | x/22-3/22=-1 | | 3r^2+4r-18=0 | | 9(z−4)=−18 | | 4x=-5x+36 | | 24+x=-10 | | z/4+3=14 | | -2/3n=12= | | 2x=+5=5x-4 | | z/6-1=-3 | | 1.6+y=-7.3= | | 3x+1x-10+2x=200 | | z/6−1=−3 | | 7(-14x-35)=1029 | | 4/3=14-x/x | | 7y=15y-12 | | 4x^2-0.0000004x-0.00000004=0 | | 5x+10=4x+19 | | 3(2n+5)=7(3n+8)+4 | | 10b²+17b-20=0 | | 6x÷7=-12 | | 125=y+8.67 | | 2=f-18 | | -3w+-2w+3w−-17w=15 | | 30/x=15/6=18/5= | | 5/9-x/12=5/6 | | 3x+1x-10+2×=200 |